Nonholonomic Systems and Sub-riemannian Geometry

نویسنده

  • OVIDIU CALIN
چکیده

This paper presents several classical mechanical systems with nonholonomic constraints from the point of view of sub-Riemannian geometry. For those systems that satisfy the bracket generating condition the system can move continuously between any two given states. However, the paper provides a counterexample to show that the bracket generating condition is not also a sufficient condition for connectivity. All possible motions of the system correspond to curves tangent to the distribution defined by the nonholonomic constraints. Among the connecting curves we distinguish an optimal one which minimizes a certain energy induced by a natural sub-Riemannian metric on the non-integrable distribution. The paper discusses several classical problems such as the knife edge, the skater, the rolling disk and the nonholonomic bicycle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of Nonholonomic Systems and Sub-Riemannian Geometry

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...

متن کامل

On Some Sub-riemannian Objects in Hypersurfaces of Sub-riemannian Manifolds

We study some sub-Riemannian objects (such as horizontal connectivity, horizontal connection, horizontal tangent plane, horizontal mean curvature) in hypersurfaces of sub-Riemannian manifolds. We prove that if a connected hypersurface in a contact manifold of dimension more than three is noncharacteristic or with isolated characteristic points, then given two points, there exists at least one p...

متن کامل

Topics in sub-Riemannian geometry

Sub-Riemannian geometry is the geometry of spaces with nonholonomic constraints. This paper presents an informal survey of some topics in this area, starting with the construction of geodesic curves and ending with a recent definition of curvature. Bibliography: 28 titles.

متن کامل

Optimal control of nilpotent systems: a sub-Riemannian approach

We present a general framework for the optimal control of driftless nonlinear systems defined by means of distributions of smooth vector fields that generate nilpotent Lie algebras. A smooth varying inner product on the planes of the distribution, yields the energy functional that allows to approach the optimal control problem as a sub-Riemannian geodesic problem. This class of systems is relev...

متن کامل

Geometry and integrability of Euler–Poincaré–Suslov equations

We consider nonholonomic geodesic flows of left-invariant metrics and left-invariant nonintegrable distributions on compact connected Lie groups. The equations of geodesic flows are reduced to the Euler–Poincaré–Suslov equations on the corresponding Lie algebras. The Poisson and symplectic structures give raise to various algebraic constructions of the integrable Hamiltonian systems. On the oth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010